Skew Braces that do not come from Rota-Baxter Operators

Andrea Caranti, Lorenzo Stefanello
Omaha, 31 May 2022
10:30CDT 11:30EDT 15:30UTC 16:30BST 17:30CEST 00:30+1JSTAC Dipartimento di MatematicaUniversità degli Studi di TrentoItalyLS Dipartimento di MatematicaUniversità degli Studi di PisaItaly

Skew braces and lambda/gamma functions

A skew brace is a set endowed with two group operations "." and "o", connected by

$$
((a \cdot b) \circ c) \cdot c^{-1}=(a \circ c) \cdot c^{-1} \cdot(b \circ c) \cdot c^{-1} .
$$

This states that the maps

$$
\gamma(c): x \mapsto(x \circ c) \cdot c^{-1}
$$

are endomorphisms of (G, \cdot).
In fact, a skew brace can be equivalently defined as a group (G, \cdot), together with a map $\gamma: G \rightarrow \operatorname{Aut}(G)$ which satisfies the functional equation

$$
\gamma\left(g^{\gamma(h)} h\right)=\gamma(g) \gamma(h)
$$

This equation encodes the associativity of the group operation " \circ " given by $g \circ h=g^{\gamma(h)} h$.

Rota－Baxter operators：a short bibliography

图 Glen Baxter
An analytic problem whose solution follows from a simple algebraic identity
Pacific J．Math． 10 （1960），731－742
围 Li Guo，Honglei Lang，and Yunhe Sheng Integration and geometrization of R－B Lie algebras Adv．Math． 387 （2021），Paper No．107834，34pp
围 Valeriy G．Bardakov and Vsevolod Gubarev
$R-B$ groups，skew left braces，and the $Y-B$ equation
J．Algebra 596 （2022），328－351
https：／／arxiv．org／abs／2105．00428
A．C．，L．Stefanello
Skew braces from R－B operators etc arXiv：2201．03936，Annali di Matematica Pura e Appl．， 2022

Rota-Baxter operators and gamma functions

A Rota-Baxter operator on the group G is a map $B: G \rightarrow G$ such that

$$
B\left(g^{B(h)} h\right)=B\left(B(h)^{-1} g B(h) h\right)=B(g) B(h) .
$$

Since gamma functions $\gamma: G \rightarrow \operatorname{Aut}(G)$ are characterised by the equation

$$
\gamma\left(g^{\gamma(h)} h\right)=\gamma(g) \gamma(h)
$$

if $\iota: G \rightarrow \operatorname{Inn}(G), \iota: g \mapsto\left(x \mapsto g^{-1} x g\right)$, a Rota-Baxter operator B yields a gamma function

$$
\begin{equation*}
\gamma(g)=\iota(B(g)) \in \operatorname{Inn}(G) \tag{1}
\end{equation*}
$$

via

Conversely, if $\gamma: G \rightarrow \operatorname{Inn}(G)$ is a gamma function, under which conditions does it come from a Rota-Baxter operator via (1)?

Lifting Morphisms 1/3

Let U, V be groups, and A be an abelian, normal subgroup of V. Let $\varphi: U \rightarrow V / A$ be a morphism.

Under which conditions does φ lift to a morphism $U \rightarrow V$?
A is a V-module under conjugation, and thus a V / A-module, as A is abelian. A is then a U-module via φ.

Lift φ to a map $C: U \rightarrow V$, that is, for each $u \in U$ choose $C(u) \in \varphi(u)$, so that

$$
\varphi(u)=C(u) A \quad \text { for } u \in U .
$$

Since φ is a morphism, we will have

$$
C(x y)=C(x) C(y) \kappa(x, y)
$$

for some function $\kappa: U \times U \rightarrow A$.

Lifting Morphisms 2/3

$C: U \rightarrow V$ is a lift of the morphism $\varphi: U \rightarrow V / A$.

$$
C(x y)=C(x) C(y) \kappa(x, y)
$$

Let us enforce associativity:

$$
\begin{aligned}
C((x y) z) & =C(x y) C(z) \kappa(x y, z) \\
& =C(x) C(y) \kappa(x, y) C(z) \kappa(x y, z) \\
& =C(x) C(y) C(z) \kappa(x, y)^{z} \kappa(x y, z) \\
C(x(y z)) & =C(x) C(y z) \kappa(x, y z) \\
& =C(x) C(y) C(z) \kappa(y, z) \kappa(x, y z) .
\end{aligned}
$$

We have obtained that κ is a 2 -cocycle.

Lifting Morphisms 3/3

$$
C(x y)=C(x) C(y) \kappa(x, y) \text {, where } \kappa: U \times U \rightarrow A \text { is a 2-cocycle. }
$$

- κ depends on the choice of the lift $C: U \rightarrow V$ of $\varphi: U \rightarrow V / A$, but
- the cohomology class of κ in $H^{2}(U, A)$ is independent of C.

We have

Proposition

The following are equivalent.

- $\varphi: U \rightarrow V / A$ lifts to a morphism $U \rightarrow V$.
- The class of κ in $\mathrm{H}^{2}(U, A)$ is trivial.

A cohomological setting for Rota-Baxter operators

Let $\gamma: G \rightarrow \operatorname{Inn}(G)$ be a gamma function, so that
$\gamma(g \circ h)=\gamma\left(g^{\gamma(h)} h\right)=\gamma(g) \gamma(h)$. Thus we have morphisms

$$
(G, \circ) \underset{\varphi}{\stackrel{\gamma}{\Longrightarrow} \operatorname{Inn}(G) \xrightarrow{\sim}} G / Z(G)
$$

Lift the morphism φ to a map $C: G \rightarrow G$ s.t. $\gamma(g)=\iota(C(g))$. Then

$$
\begin{aligned}
C\left(g^{C(h)} h\right) & =C\left(g^{\iota(C(h))} h\right)=C\left(g^{\gamma(h)} h\right) \\
& =C(g \circ h)=C(g) C(h) \kappa(g, h),
\end{aligned}
$$

where $\kappa:(G, \circ) \times(G, \circ) \rightarrow Z(G)$ is a 2-cocycle, which depends on the choice of C, but whose class in $H^{2}((G, \circ), Z(G))$ does not.

Proposition

The following are equivalent.

- γ comes from a Rota-Baxter operator B, i.e. $\gamma(g)=\iota(B(g))$.
- κ is trivial in $H^{2}((G, o), Z(G))$.

An example

Let

$$
(G, \cdot)=\left\langle u, v, k: u^{p}, v^{p}, k^{p},[u, v]=k,[u, k],[v, k]\right\rangle .
$$

be the Heisenberg group of order $p^{3}, p>2$ a prime, $Z(G)=\langle k\rangle$. Let $\alpha \in \mathbf{Z} / p \mathbf{Z}$. Consider the $\operatorname{map} C: G \rightarrow G$ given by $C(g)=g^{\alpha}$. Then

$$
\gamma(g)=\iota\left(g^{\alpha}\right) \text { is a gamma function } G \rightarrow \operatorname{Inn}(G)
$$

We have

- When $\alpha \neq-1 / 2$, the gamma function γ comes from the Rota-Baxter operator

$$
B\left(u^{i} \cdot v^{j} \cdot k^{r}\right)=u^{i \alpha} \cdot v^{j \alpha} \cdot k^{\alpha^{2}(r-i j \alpha)(1+2 \alpha)^{-1}}
$$

for $0 \leq i, j, r<p$.

- When $\alpha=-1 / 2$, the gamma function γ does not come from a Rota-Baxter operator. (Here (G, \circ) is abelian.)

Baer, Lazard, Baker-Campbell-Hausdorff

囯 Reinhold Baer

Groups with abelian central quotient group

Trans. Amer. Math. Soc. 44 (1938), no. 3, 357-386
Let G be a group of nilpotence class two admitting unique square roots. Define

$$
g \circ h=g \cdot h \cdot[g, h]^{-1 / 2} .
$$

Then (G, \circ) is an abelian group.

$$
\begin{aligned}
h \circ g & =h \cdot g \cdot[h, g]^{-1 / 2} \\
& =g \cdot h \cdot[h, g] \cdot[h, g]^{-1 / 2} \\
& =g \cdot h \cdot[h, g]^{1 / 2} \\
& =g \circ h
\end{aligned}
$$

Rota-Baxter operators via Extensions

The 2-cocycle associated to $C(g)=g^{\alpha}$ is $\kappa(x, y)=[x, y]^{-\binom{\alpha+1}{2}}$. Consider the standard sequence

$$
1 \rightarrow Z(G) \rightarrow \underbrace{Z(G) \times(G, \circ)}_{\text {set-theoretic product }} \rightarrow(G, \circ) \rightarrow 1
$$

associated to $\kappa \in H^{2}((G, \circ), Z(G))$. The operation is given by

$$
\left(z_{1}, g_{1}\right)\left(z_{2}, g_{2}\right)=\left(z_{1} z_{2} \kappa\left(g_{1}, g_{2}\right), g_{1} \circ g_{2}\right) .
$$

- If the extension does not split, i.e. κ is non-trivial in $H^{2}((G, \circ), Z(G)), \gamma$ does not come from a R-B operator.
- If the extension does split, a complement to $Z(G)$ naturally determines a coboundary $\sigma: G \rightarrow Z(G)$, which is the correction to be made to C to obtain a $\mathrm{R}-\mathrm{B}$ operator; recall

$$
C\left(g^{C(h)} h\right)=C(g) C(h) \kappa(g, h) .
$$

How do we know whether it splits or not?

In the case of the sequence

$$
1 \rightarrow Z(G) \rightarrow \underbrace{Z(G) \times(G, \circ)}_{\text {set-theoretic product }} \rightarrow(G, \circ) \rightarrow 1,
$$

where

$$
(G, \cdot)=\left\langle u, v, k: u^{p}, v^{p}, k^{p},[u, v]=k,[u, k],[v, k],\right\rangle .
$$

one computes

$$
[(1, u),(1, v)]=\left(k^{-\alpha(\alpha+1)}, k^{1+2 \alpha}\right)
$$

- If $\alpha=-1 / 2$, the sequence does not split; here $Z(G) \times 1$ is contained in the derived subgroup of the extension, so a complement to $Z(G) \times 1$ would be a maximal subgroup which does not contain the derived subgroup, a contradiction.
- If $\alpha \neq-1 / 2$, the subgroup $\langle(1, u),(1, v)\rangle$ intersects $Z(G) \times 1$ trivially, and thus it is a complement to $Z(G) \times 1$.
The sequence splits (explicitly).

Thanks!

That's All, Thanks!

