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Skew braces and lambda/gamma functions

A skew brace is a set endowed with two group operations “·” and
“◦”, connected by

((a · b) ◦ c) · c−1 = (a ◦ c) · c−1 · (b ◦ c) · c−1.

This states that the maps

γ(c) : x 7→ (x ◦ c) · c−1

are endomorphisms of (G, ·).

In fact, a skew brace can be equivalently defined as a group (G, ·),
together with a map γ : G → Aut(G) which satisfies the functional
equation

γ(gγ(h)h) = γ(g)γ(h).
This equation encodes the associativity of the group operation “◦”
given by g ◦ h = gγ(h)h.
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Rota–Baxter operators and gamma functions

A Rota–Baxter operator on the group G is a map B : G → G such
that

B(gB(h)h) = B(B(h)−1gB(h)h) = B(g)B(h).
Since gamma functions γ : G → Aut(G) are characterised by the
equation

γ(gγ(h)h) = γ(g)γ(h),
if ι : G → Inn(G), ι : g 7→ (x 7→ g−1xg), a Rota–Baxter operator B
yields a gamma function

γ(g) = ι(B(g)) ∈ Inn(G), (1)

via
G B //

γ
33G ι // Inn(G).

Conversely, if γ : G → Inn(G) is a gamma function, under which
conditions does it come from a Rota–Baxter operator via (1)?
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Lifting Morphisms 1/3

Let U,V be groups, and A be an abelian, normal subgroup of V.
Let φ : U → V/A be a morphism.

Under which conditions does φ lift to a morphism U → V?

A is a V-module under conjugation, and thus a V/A-module, as A
is abelian. A is then a U-module via φ.

Lift φ to a map C : U → V, that is, for each u ∈ U choose
C(u) ∈ φ(u), so that

φ(u) = C(u)A for u ∈ U.

Since φ is a morphism, we will have

C(xy) = C(x)C(y)κ(x, y),

for some function κ : U × U → A.
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Lifting Morphisms 2/3

C : U → V is a lift of the morphism φ : U → V/A.

C(xy) = C(x)C(y)κ(x, y).

Let us enforce associativity:

C((xy)z) = C(xy)C(z)κ(xy, z)
= C(x)C(y)κ(x, y)C(z)κ(xy, z)
= C(x)C(y)C(z)κ(x, y)zκ(xy, z)

C(x(yz)) = C(x)C(yz)κ(x, yz)
= C(x)C(y)C(z)κ(y, z)κ(x, yz).

We have obtained that κ is a 2-cocycle.
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Lifting Morphisms 3/3

C(xy) = C(x)C(y)κ(x, y), where κ : U × U → A is a 2-cocycle.

• κ depends on the choice of the lift C : U → V of
φ : U → V/A, but

• the cohomology class of κ in H2(U,A) is independent of C.

We have
Proposition
The following are equivalent.

• φ : U → V/A lifts to a morphism U → V.
• The class of κ in H2(U,A) is trivial.
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A cohomological setting for Rota–Baxter operators

Let γ : G → Inn(G) be a gamma function, so that
γ(g ◦ h) = γ(gγ(h)h) = γ(g)γ(h). Thus we have morphisms

(G, ◦) γ //

φ

22Inn(G) ∼ // G/Z(G)

Lift the morphism φ to a map C : G → G s.t. γ(g) = ι(C(g)). Then

C(gC(h)h) = C(gι(C(h))h) = C(gγ(h)h)
= C(g ◦ h) = C(g)C(h)κ(g, h),

where κ : (G, ◦)× (G, ◦) → Z(G) is a 2-cocycle, which depends on
the choice of C, but whose class in H2((G, ◦),Z(G)) does not.
Proposition
The following are equivalent.
• γ comes from a Rota–Baxter operator B, i.e. γ(g) = ι(B(g)).
• κ is trivial in H2((G, ◦),Z(G)). 7/11



An example

Let (G, ·) = ⟨ u, v, k : up, vp, kp, [u, v] = k, [u, k], [v, k] ⟩.
be the Heisenberg group of order p3, p > 2 a prime, Z(G) = ⟨ k ⟩.

Let α ∈ Z/pZ. Consider the map C : G → G given by C(g) = gα.
Then

γ(g) = ι(gα) is a gamma function G → Inn(G).

We have

• When α ̸= −1/2, the gamma function γ comes from the
Rota–Baxter operator

B(ui · vj · kr) = uiα · vjα · kα2(r−ijα)(1+2α)−1
,

for 0 ≤ i, j, r < p.
• When α = −1/2, the gamma function γ does not come from

a Rota–Baxter operator. (Here (G, ◦) is abelian.) Skip Baer 8/11



Baer, Lazard, Baker–Campbell–Hausdorff

Reinhold Baer
Groups with abelian central quotient group
Trans. Amer. Math. Soc. 44 (1938), no. 3, 357–386

Let G be a group of nilpotence class two admitting unique square
roots. Define

g ◦ h = g · h · [g, h]−1/2.

Then (G, ◦) is an abelian group. Skip calculation

h ◦ g = h · g · [h, g]−1/2

= g · h · [h, g] · [h, g]−1/2

= g · h · [h, g]1/2

= g ◦ h.
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Rota–Baxter operators via Extensions

The 2-cocycle associated to C(g) = gα is κ(x, y) = [x, y]−(α+1
2
).

Consider the standard sequence

1 → Z(G) → Z(G)× (G, ◦)︸ ︷︷ ︸
set-theoretic product

→ (G, ◦) → 1

associated to κ ∈ H2((G, ◦),Z(G)). The operation is given by

(z1, g1)(z2, g2) = (z1z2κ(g1, g2), g1 ◦ g2).

• If the extension does not split, i.e. κ is non-trivial in
H2((G, ◦),Z(G)), γ does not come from a R–B operator.

• If the extension does split, a complement to Z(G) naturally
determines a coboundary σ : G → Z(G), which is the
correction to be made to C to obtain a R–B operator; recall

C(gC(h)h) = C(g)C(h)κ(g, h).
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How do we know whether it splits or not?

In the case of the sequence

1 → Z(G) → Z(G)× (G, ◦)︸ ︷︷ ︸
set-theoretic product

→ (G, ◦) → 1,

where (G, ·) = ⟨ u, v, k : up, vp, kp, [u, v] = k, [u, k], [v, k], ⟩.

one computes
[(1, u), (1, v)] = (k−α(α+1), k1+2α).

• If α = −1/2, the sequence does not split; here Z(G)× 1 is
contained in the derived subgroup of the extension, so a
complement to Z(G)× 1 would be a maximal subgroup which
does not contain the derived subgroup, a contradiction.

• If α ̸= −1/2, the subgroup ⟨ (1, u), (1, v) ⟩ intersects Z(G)× 1

trivially, and thus it is a complement to Z(G)× 1.
The sequence splits (explicitly).
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Thanks!

That’s All, Thanks!
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